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Fig.1. Bellows flexible shaft coupling: 
1 – driving part, 2 – driven part, 3 – conduit,      
4 – pneumatic flexible elements (rubber-cord shells) 
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Summary 

Couplings incorporating rubber-cord shells, and their viscoelastic characteristics have been studied. The 
effectiveness of the couplings to limit the dynamic load is shown by an example of aballmill drive. It has 
been found that the use of the couplings equipped withrubber-cord shells as the flexible elements allows 
limiting the dynamic shock loads in machinedrives. It has been shown that the elimination of resonance 
modes and restriction of forced torque fluctuations in the drive can be providedby selecting a limit torque for 
the coupling actuation, which is determined by an initial air pressure in the rubber-cord shells of the coupling. 

 
Keywords: pneumatic flexible shaft coupling,bellows flexible shaft couplings,rubber-cord shells, ball mill 

drive, shock loads, forced oscillations. 
 

OGRANICZENIE OBCIĄŻEŃ DYNAMICZNYCH W NAPĘDACH UKŁADÓW MECHANICZNYCH 
 

Streszczenie 
Tematem artykułu naukowego są sprzęgła elastyczne z członami pneumatyczno-elastycznymi łączące wały. 
Zalety oraz efektywność zastosowania wspomnianych sprzęgieł w celu ograniczenia obciążeń dynamicznych 
przedstawiono na przykładzie napędu młyna bębnowego. Udowodniono, że poprzez zastosowanie sprzęgieł z 
członami pneumatyczno-elastycznymi możliwe jest ograniczenie obciążeń napędów młynów bębnowych 
charakteryzujących się przede wszystkim dynamicznymi obciążeniami udarowymi. Równocześnie 
stwierdzono, że wykluczenie trybów pracy, w których występuje rezonans i ograniczenie w ten sposób drgań 
wymuszonych, jest możliwe poprzez odpowiedni wybór nadciśnienia medium gazowego w członach 
pneumatyczno-elastycznych danych sprzęgieł. 
 

Słowa kluczowe: sprzęgło elastyczne, pneumatyczne sprzęgło elastyczne łączące wały, człony 
pneumatyczno-elastyczne, napęd młyna bębnowego, dynamiczne obciążenia udarowe, drgania wzbudzane. 

 
1. INTRODUCTION 
 

In the start-up period and the steady state 
operation of drives in various-typeproduction 
machinery [1], [2], [3], there occur dynamic loads 
that may several times exceed the nominal load and 
maydecrease therated life and reliability of 
mechanical systems [4], [5], [6].   

Flexible couplings have long been used to limit 
the dynamic loads in machine drives [7], [8], [9], 
[10], [11]. Recently, the couplings that incorporate 
rubber-cord shells as flexible elements have become 
more and more widespread [6], [7], [12], [13], [14]. 

Rubber-cord flexible pneumatic elements offer 
several advantages as compared to metal elements 
[15], [16], [17], [18], [19], [20]: 

- higher durability; 
- the possibility to automatically control the 

stiffness and dissipative characteristics; 
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- increased compensation of the axes 
misalignment angles 

Fig.1 shows the flexible shaft coupling (bellows 
flexible shaft coupling), developed by the Polish 
company FENA at the Technical University in 
Kosice (Slovakia) under the guidance of Prof.  

 
 

Jaroslav Homisin [13], [14], [21], [22], [23], [24]. It 
uses rubber-cord shells filled with air as flexible 
elements. 

Bellows flexible shaft couplings can be used in 
rotary mills, crushers, pumps, fans, compressors, 
conveyors, mixers and other machines and apparatus 
[6], [7], [18], [24], [26], [27], [28], [29], [30]. 

The aim of the study is to prove the effectiveness 
of flexible shaft couplings by an example of the ball 
mill drive. 

 
2. A DYNAMICMODEL OF A 

SYNCHRONOUS DRIVE OF A TUMBLING 
BALL MILL 

 
An analysis of dynamic processes in the mill 

drive is done using the side drive as an example [5], 
[18], the dynamic diagram being shown in Fig. 2, 
whereI1, I2 areequivalent moments of inertia of the 
rotor and the drum under load, respectively; с12 is the 
equivalent stiffness of the mechanical transmission; 
MEM(t) , MR(φ2,ω2) are the electromagnetic engine 
torque and the drum resistance torque caused by the 
сharge materialgravitytorque Gl/u (Glis the charge 
material gravity torquewith respect to the rotational 
axis, u is gear ratio) and the frictional torque Mfr.. 

 
Fig.2.A dynamic model of the mill drive: 

I1, I2 areequivalent momentsof rotoranddruminertia; 
с12is equivalents tiffnes sofmechanical transmission; 

MEM(t), MR(φ2,ω2) are electromgnetic engine torque and 
drum resistance moments 

 
Differential dynamic equations for the ball mill 

power unit, which in relative terms describethe 
electromagnetic processes inthe synchronous motors 
by the Park-Gorevequations, will have the following 
form [12]: 
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whereΨd, Ψq  aremagnetic-flux linkage of the stator 
winding along a longitudinal and a transverse 
axis;Ψf is field winding flux linkage; 
Ψed, Ψeq aredamper winding flux linkage along a 
longitudinal and a transverse axis; Um is the 
amplitude of the phase voltage; Uf  is field winding 
voltage; ω1 is the angular speed of the motor; H1, H2 
are moments of inertia of the rotor and drum in 
relative units; МEM is electromagnetic torque of the 
motor; МR(φ2,ω2)  is moment of resistance; θ is 
periferical displacement between stator and rotor 
space vectors; ra, rf, red, req are resistances of the 
stator phase, field winding, and damper winding 
along the longitudinal and transverse axes; xd, xf, xed, 
xdf, xded, xfed, xq,  xeq,  xqeq  are super transition 
resistances; φ1, φ2 are angles of the engine and drum 
rotation. 

Equivalenttothe rotor shaft and presented in 
relative terms, the moment of resistance МR takes the 
following form  

 
( ) ( ) ( )2222 , ϕωωϕ GfrR MMM += ,        (3) 

where 
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Fig.3. Schematic of a flexible coupling: 
1,2 – rubber plates; 3 – mounting bracket 
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where Mfr.о is the friction torque at the initial time; 
Mfr.st is steady-state friction torque; ω*2 is angular 
rotational speed of the drum, which produces the 
smallest friction torque; β0 is the initial angle of the 
charge material center of gravity in respect to the 
vertical axis of the drum; MGmax is maximum 
moment of charge material resistance; MGst is 
moment of resistance of the charge material weight 
in the steady-state operation; pe is the number 
ofmotor pole pairs. 

The start occurs asynchronously at Uf = 0, and 
the field winding is closed on a discharge resistor rfΣ. 
When sub-synchronous speed ω´ has been reached, 
the discharge resistor is switched off and the field 
current is supplied. Thus, the following condition 
should be met: 

rf = rf Σ, Uf = 0 at 0 ≤ ω2 ≤ ω´; 
rf = rfΣ, Uf ≠ 0, at ω2 ≥ ω´. 

The adequacy of the proposed mathematical 
model was verified experimentally using the ММС 
90х30 ball mill. The mill drive includes: a 
synchronous motor SDMZ 2-24-59-80U4 withrated 
power P=4,000 kW androtational speed n1 =75 rpm, 
and a flexible coupling (Fig.3) that uses rubber 
plates as flexible elements (equivalent coupling  

 
stiffness is 50·103 kN·m·rad-1). Thetorque is 
transmitted to the drum byanopen gear with agear 
ratio of u = 6.76. 

 
Fig.4а shows an experimental oscillogramof the 

torque in the mill shafting [5], [12] Fig.4b shows a 
calculated torque- time dependence. 

 
а 

 
b 

Fig.4. Torque oscillogram for the MMC 90 × 30 mill shafting : 
 а, bare the experimental and calculated relationships between the torque and the rotational speed; 

1 – torque; 2 – rotor rotational speed 
 
Comparison of the experimental and calculated 

data leads to a conclusion that the proposed 
mathematical model adequately describes the 

dynamic processes in the drive during the start-up 
period and in a steady state operation. 
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3. THE ELASTIC CHARACTERISTICS OF 
BELLOWS FLEXIBLE SHAFT COUPLINGS 

 
The effectiveness of bellows shaft couplings may 

be shown by an example of the above ball-mill 
drive. To suit this drive, a bellows flexible shaft 
coupling should use the model Ya-300 rubber-cord 
shells as pneumatic elements [6], [7], [12], [17]. 
With the internal pressure of p = 0.51 MPa, load-
carrying capacity of the pneumatic element is Q = 
147 100 N, and with the initial height of H = 165 
mm, a compression and back travel is Z = ± 40 mm. 

Five pneumatic elements installed in the bellows 
shaft coupling (Fig.5.а) can transmit a torque of 
Mtorque = 509 kNm, while eight pneumatic elements 
will transmit a torque of Mtorque = 814 kNm (Fig.5.c). 
The largest diameter will be D2 = 2200 mm and the 
diameter of the pneumoelements installation will be 
D1 = 1384 mm. To decrease the bellows shaft 
coupling stiffness and increase its travel, the 
pneumatic elements may be installed in series 
(Fig.5b). A further decrease in the stiffness of the 
bellows shaft couplings is provided by connecting 
the pneumatic elements to an additional volume.

 

 
                            а)                                                       b)                                                       c) 

Fig. 5. Flexible couplings with Ya-300 rubber-cord shells: 
а, b- torqueMtorq = 509 kN·m, torsinal stiffnessis с = 4.7·106 N·m·rad,andс = 2.35·106 N·m·rad-1respectively; c-

torqueMtorq = 814 kN·m, с = 7.52·106 N·m·rad-1;  
1, 2 -half-coupling cheeks; 3 – pneumatic element; 4 – hub; 5 – shaft 

 
To improve the dissipative properties of the 

coupling, the rubber-cord shells may be filled with a 
fluid and connected by means of a throttle valve to a 
hydropneumatic accumulator, which can be installed 
directly on the shaft [3]. 

The working portion of viscoelastic 
characteristic of the coupling is described as follows 
[8]:
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( ) ( )Ma0 RkSS αα +⋅= 1  
 

where α is the coupling twist angle; M(α) is torque 
received by the pneumatic flexible coupling; S(α) is 
an effective area of the rubber-cord shell at an 
arbitrary time; S0 is the initial effective area of the 
rubber-cord shell at rated load; ka is approximation 
factor; nBELL Vg is the gas volume in the coupling 
bellows or in the pneumatic chamber of a 
hydropneumatic accumulator; nBELLis the number of 
rubber-cord shells (bellows); pa, puo are atmospheric 
and surplus pressure in the fluid and gas, 
respectively;ρisthe fluid density; µ1 is fluid flow rate 
through the throttling orifice; f is the throttle flow 

area; n is polytropic coefficient; RM=D1/2 is radius 
of pneumatic elements installation. 

The first term in the expression (6) represents the 
damping forces, and the second term describes the 
static characteristic of the coupling at n = 1: 
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Fig. 6 shows the static characteristic of the 
flexible couplings under consideration. 

 
Fig.6. Static characteristic of a flexible coupling with 

rubber-cord shells 
1, 2, 3 – elastic properties of the couplings  

Fig.5 а, b, crespectively; ab, cd – the coupling 
travel; the coupling start and closing time 

 
4. ANALYSIS OF THE CALCULATED DATA 

 
Fig. 7 shows the calculated torque dependences 

in the MMC 90x30 mill drive equipped with a 
flexible bellows shaft coupling. 
 

 

 
a 

 
b 
 

 
c 

Fig. 7. The calculated torque - time dependences in the MMC 90x30 mill drive: 
а, b− bellowsflexibleshaftcoupling;c – bellows flexible coupling with precompression 

 
The calculated data (Fig. 4b and Fig. 7a) show 

that the use of the bellows flexible coupling has 
almost halfreduced the peak dynamic loads in the 
drive power system at the moment of motor coming 
into synchronizm. 

On the other hand, abellows flexible coupling, 
when used in the drive system, significantly reduces 

the stiffness of the mechanical transmission.This, in 
turn, reduces the frequencies of the system natural 
oscillations, which may cause resonance modes at 
low frequencies.In ball mill drives, these low-
frequency disturbances may occur inthe frequencies 
of the drum rotation,or the drum charge material 
rotation, or the lifters - charge material interaction. 
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Fig. 7b shows the case when a disturbing torque, 
with an amplitude equal to 2 % of the ratedvalue 
(0,02 . MN) isactingon the mill drum. 

In this case, forced resonanceoscillations,with a 
frequency of 4,21 s-1 and an amplitude of 12% of the 
rated torque are excited in the flexible system of the 
drive.The use of bellows flexible couplings can 
solve this problem. Fig. 7c shows the drive torque 
dependence for the case when the coupling starts 
with the torque increased to 1,2 . MN, which is 
achieved by selecting a specific air pressure in the 
bellows. As a result, the resonance modes at low 
disturbance frequencies are eliminated, and peak 
dynamic loadscan be limited. 

 
5. CONCLUSION 

 
1. Comparison of experimental and calculated 

data suggests a conclusion that the presented 
mathematical model adequately describes the 
dynamic processes in the synchronous drive of the 
drum mill [12], [18], [26], [ 28]. 

2. Upon analysing the calculated data it has been 
found that: 

- Effective limitation of shock dynamic loads in 
machines can be achieved by using flexible 
couplings that incorporate rubber-cord shells as the 
flexible elements [5], [15], [16], [17];  

- Prevention of resonant modes and restriction of 
forced torque oscillations in the drives can be 
provided through a proper selection of a limit torque 
for the coupling actuation, which is determined by 
an initial air pressure in the rubber-cord shells of the 
coupling [6], [7], [8], [27].  
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